Advanced Heat and Mass Transfer ESE-905

Background

1. Thermal processes are crucial to the operation of many engineering systems, such as nuclear reactors, gas-turbines, domestic heating systems, cooling of electronics and electrical components and many others. Heat transfer addresses the transport of energy due to conduction, convection and radiation and impacts nearly every area of industrial practice, including aerospace, automotive, biotechnology, chemical and materials processing, electronics, energy and environmental engineering, combustion, materials and manufacturing, and many others. This course will develop in-depth understanding of the physical processes involved in the transfer of thermal energy and mass, in a range of phenomena encountered engineering applications and also of the analytical techniques that can be applied.

Rationale

2. Rationale for offering/launching the new course

This course requires that students have; the ability to apply advanced mathematics through multivariate calculus and differential equations; the ability to work professionally in thermal systems areas including the design and realization of the thermal energy systems.

Educational Objectives

- 3. The course is designed to achieve the following objectives
 - To develop a strong physical and conceptual understanding of heat and mass transfer processes.
 - Apply scientific and engineering principles to analyze and design thermosfluid aspects of engineering systems.
 - Use appropriate analytical and computational tools to investigate heat and mass transport phenomena of different geometries.
 - Thermal design; recognize the broad technological context of heat transfer, especially related to energy technology.

 To apply the associated heat transfer theories to simple engineering cases, with focuses on modeling establishment and problem closures.

Input Obtained from Industry/Corporate Sector/Subject Specialists/Academia

4. Attach details of the input, if received.

International Practice

5. Specify the universities of repute where the proposed course is being conducted.

UC Los Angeles, UT San Antonio, Univ. of Alaska

Proposed Timeframe of Commencement

6. Specifying semester with year.

Fall 2015

Course Contents

- 7. Give details of the course, on the following lines:
 - a. Course Code ESE-905
 - b. Title Advanced Heat and Mass Transfer
 - c. Credit Hours 3
 - d. Objectives (explained under heading 3)
 - e. Outcomes

This course is designed to introduce the students with phenomena of advanced heat and mass transfer, to develop methodologies for solving a wide variety of practical thermal engineering problems, and to provide useful information concerning the performance and design of particular systems and processes. A knowledge-based design problem requiring the formulations of solid conduction and fluid convection and the technique of numerical computation progressively elucidated in different chapters will be assigned and studied in detail.

f. Contents with suggested contact hours

No.	Topics	Book	Contact
			Hours
1.	Conduction Heat transfer	YA,AF	12
	 Differential equations for heat conduction in solid 	& AD	
	materials.		
	 Solutions for different special cases. Fin efficiency for 		
	different fin designs		
	 Two and three-dimensional cases at stationary 		
	conditions.		
	Laplace equation. The form factor. Numerical solution		
	methods and analogy methods. Numerical solutions of		
	unsteady conduction and steady conduction		
	 Non-stationary cases. Solutions for flat surfaces and 		
	cylinders		
	 The "Lumped heat capacity" method. 		
	 Unsteady state conduction in solids with infinite 		
	thermal conductivity, infinite thick-solids, periodic		
	variation		
2.	Convection heat transfer	YA,AF	10
	 Forced convection inside tubes and ducts 	& AD	
	 Forced convection over exterior surfaces 		
	Heat transfer at natural (free) convection, Grashof's		
	number. Boundary layer equations in integral form		
	with solutions for natural convection for vertical plates		
	 Empirical relationships for laminar and turbulent 		
	boundary layers at vertical and horizontal plates,		
	cylinders and slots		
	Transitional Flow in tubes		
	 Eddy heat diffusivity, Reynold's analogy between skin 		
	friction and heat transfer		
3	Radiation Heat Transfer	YA&	7

	Heat transfer at radiation	AF	
	 The "black body" concept. Emission and absorption 		
	numbers. Radiant efficiency, angular factor.		
	Heat transfer at irradiated surfaces		
	Heat transfer at condensation		
	 Nusselt's theory, condensation on and in horizontal 		
	pipes		
	Heat transfer at boiling		
	Various types of boiling, the boiling curve		
4.	Heat exchangers	YA; SK	8
	• Different types of heat exchangers, Fouling Factor,	& AF	
	logarithmic mean temperature difference,		
	temperature effectiveness, NTU, Selection		
	Techniques of the heat exchangers		
5.	Mass Transfer	YA&	8
	 Introduction, Fick's law, General equation of mass 	AF	
	diffusion steady state, diffusion through a plain		
	membrane, diffusion of water vapor through air, Mass		
	transfer coefficient, convective mass transfer		
	Heat Pipe		
	 Introduction, Working of Heat pipe, Different types of 		
	Heat Pipe, Detail of Heat Pipe components,		
	Advantages of Heat Pipe, Application of Heat Pipe,		
	Performance of Heat Pipe, Limitation of Heat Pipe,		
	Analysis and Design of Heat Pipe.		
	g. Details of lab work, workshops practice (if applicable)		

NA

h. Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Heat and Mass Transfer A practical approach	Yunus A. Çengel	YA	Reference

2.	Advanced Heat and Mass	Amir Faghri, Yuwen	AF	Reference
	Transfer	Zhang, John Howell		
3.	Computational Methods	Pradip Majumdar, Pradip	PM	Reference
	for Heat and Mass	Majumdar		
	Transfer			
4.	Heat Exchangers:	Sadik Kakaç, Hongtan Liu	SK	Reference
	Selection, Rating, and			
	Thermal Design,			
5.	Engineering Heat Transfer	William S. Janna	WS	Reference
6.	Transient Heat Transfer	Annaratone, Donatello	AD	Reference